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EXECUTIVE	SUMMARY	

Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures 
play major roles for the safety of reactor systems. Depending on the fidelity requirement and 
computational resources, various modeling methods, from the 0-D perfect mixing model to 3-
D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own 
advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal 
mixing and stratification modeling capability embedded in a modern system analysis code to 
improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. 

An advanced system analysis tool, SAM, is being developed at Argonne National 
Laboratory for advanced non-LWR reactor safety analysis, under the support of U.S. 
Department of Energy (DOE) Nuclear Energy Advanced Modeling and Simulation (NEAMS) 
program. It aims to provide fast-running, modest-fidelity, whole-plant transient analyses 
capabilities, which are essential for fast turnaround design scoping and engineering analyses of 
advanced reactor concepts. While SAM is being developed as a system-level modeling and 
simulation tool, advanced modeling techniques are under development to tackle the issue of 
thermal mixing and stratification modeling in large enclosures of reactor systems during 
transients.  

This report summarizes the recent progress on the reduced-order flow model developments 
in SAM for thermal stratification and mixing modeling. Three modeling approaches are 
pursued. The first one is similar to the approach used in conventional system codes which 
models a large enclosure with multiple zero dimensional volumes. The second approach is 
based on one-dimensional fluid models with additional terms accounting for the thermal mixing 
from both macroscopic flow circulations and microscopic turbulent mixing. The third approach 
is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional 
fluid conservation equations are modeled with closure models to account for the effects of 
turbulence.  

The SAM 0-D modeling approach is based on the concept that the large enclosure can be 
divided into a number of sub-regions (multiple 0-D volumes), separated by horizontal 
interfaces. The feasibility of the multiple 0-D volume modeling approach was tested using the 
EBR-II loss-of-heat-sink test BOP-302R. Focused on the thermal-hydraulics responses of the 
system throughout the transients in which the reactor power history was specified in the input 
model, very good agreement was found among the code simulations and the test results. The 
high- and low-pressure inlet plena temperatures from the SAM simulation agreed very well 
with the test for both the initial heat up rates and the later pseudo-equilibrium states. It is thus 
demonstrated that it is feasible to account for the effects of thermal stratification in the cold 
pool by a simple multiple 0-D volume cold pool model. The simulation results were highly 
dependent on the assumption of the mixing flow rates between the upper and lower cold pools. 
Therefore, companion CFD simulations are suggested to develop correlations between the 
mixing flow rates at horizontal cross planes and the lumped sub-volume parameters for each 
large enclosure if it would be modeled in SAM with the multiple 0-D volume approach.  

The SAM 1-D modeling approach is based on similar concept of multiple 0-D volume 
approach that the large enclosure can be divided into arbitrary number of sub-volumes, 
separated by horizontal interfaces. However, the one-dimensional fluid conservation equations 
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are used. The inter-volume or inter-element energy exchange can be modeled through both 
advection and mixing flow.  Note that additional models for the mixing velocity are needed, for 
which the high-fidelity CFD simulations using LES and uRANS can assist in the closure model 
developments. A new governing (conservation) equation is introduced in our work for the 
mixing velocity. Recognizing three major contributions of the mixing flow, including local flow 
velocity, geometry, and the buoyancy effects, two parameters 𝐶"# and 𝐶"$ are introduced in the 
mixing velocity equation. 

The 1-D axial mixing model was first verified with two simple 1-D channel flow test cases, 
including the inlet temperature sharp change case and inlet temperature oscillation (following 
a sinusoidal function) case. Various modeling approaches and modeling parameters are tested 
for both test cases. The impacts of flow mixing were clearly observed in the two test cases. To 
verify the applicability of the developed 1-D axial mixing model, another test problem was 
developed based on the geometry and operating conditions of the upper plenum in the Advanced 
Burner Test Reactor (ABTR) design. Transient CFD simulations of a stand-alone tank model 
were also performed to provide the reference solutions. With increasing complexities of SAM 
models (but still in 1D and 0D) to represent the tank flow, the SAM simulation results became 
similar to the reference CFD simulation results. If the upper part of the tank (above the outlet 
pipe) was neglected in the SAM models, the outlet temperature responses would be far away 
from the reference CFD simulation results. If the upper tank is modeled, the SAM simulation 
results are much closer to the CFD results. As seen from the CFD simulation results, the upper 
part of the tank was not stagnant during the transient and strongly participated in the flow 
circulation and mixing in the tank. This preliminary demonstration case provides us confidence 
that the 1D axial mixing model could simulate the macroscopic behavior in SFR pools during 
transients with both accuracy and efficiency.   

A reduced-order three-dimensional module is also under development to model the multi-
dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. 
For computationally efficient modeling capabilities, the key modeling approaches include: 1) 
solving the full 3-D fluid conservation equations; 2) using only coarse computational meshes; 
and 3) excluding turbulence modeling. The framework of a 3-D FEM flow model has been 
developed and implemented in SAM. Closure models (mainly turbulence viscosity) in the 3-D 
flow model is being developed to account for the effects of turbulence and the use of a coarse 
mesh in momentum and energy transport. A data-driven closure model (turbulence viscosity) 
development framework has been developed to leverage machine learning (ML) technique to 
establish a surrogate model to replace the turbulence modeling in traditional CFD code. The 
framework and workflow is tested with a transient flow in a large enclosure. This test case aims 
to simulate a transient scenario mimicking the flow in an SFR upper plenum during a postulated 
loss-of-flow transient. With only 4.2% of the total data used as training data, the prediction 
accuracy of the trained ML model is very high, i.e. 86.34% of the predictions had errors of less 
than 5e-5.  

All three modeling approaches have been pursued and implemented in SAM, as all showed 
promise to model the thermal mixing and stratification during reactor transient. Additional 
closure model development is needed for all three approaches. It is thus recommended to 
perform companion high-fidelity CFD simulations to assist in the model development for any 
specific designs.   
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1 Introduction	
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play 

major roles for the safety of reactor systems. Such phenomena include the cold and hot pool mixing 
in pool-type Sodium-cooled Fast Reactors (SFR), reactor cavity cooling system behavior in High 
Temperature Gas-cooled Reactors (HTGR), passive containment cooling in advanced light-water 
reactors (such as AP1000), and thermal-stratification in BWR suppression pools. It is very 
important to accurately predict pool temperature and density distributions for both design 
optimizations and safety analyses of these reactor systems. However, the individual transport 
mechanisms governing mixing are characterized by time and length scales that can differ by orders 
of magnitude. Large volumes and complex interactions of different flow and thermal structures 
make the analysis of mixing in a large enclosure a very challenging task (intractable by analytic 
means and extremely demanding from a computational standpoint). Due to these reasons, 
experimental efforts [1-3] including large facilities like PANDA [3,4] have been continuously 
investigating these phenomena over the past three decades. 

Depending on the fidelity requirement and computational resources, 0-D steady state models, 
0-D lumped parameter based transient models, 1-D physical-based models, and 3-D 
Computational Fluid Dynamics (CFD) models are available. A good overview on major modeling 
methods of thermal mixing and stratification phenomena and their advantages and limits can be 
found in Reference [5]. 

Current major system analysis or severe accident analysis codes (such as SAS4A/SASSYS-
1[6], RELAP5[7], CATHRE[8], and MELCOR[9]) either have no models or only 0-D models for 
thermal mixing and stratification in large enclosures. The lack of general thermal mixing and 
stratification models in those codes severely limits their application and accuracy for safety 
analysis, especially for reactors relying on natural circulation for long-term cooling.  

For example, the SAS4A/SASSYS-1 code developed by Argonne National Laboratory 
(“Argonne”), one of the major SFR system analysis codes, provides lumped-volume-based 0-D 
models that can only give very approximate results and can only handle simple cases with one 
mixing source. The models were derived according to simulant experiments for specific SFR upper 
plenum design configurations. Depending on the momentum and buoyancy of the outlet flow from 
the reactor core, well mixed case, two-zone with a negative buoyant jet case, two-zone with a 
positive buoyant jet case, and even more complex three-zone cases may form. The total jet 
entrainment, zone interface location, and average temperatures in each zone can be estimated by 
empirical correlations. Since the methods are based on scaled experimental data, using those 
models for SFR designs with different hot/cold pool configurations tends to result in large 
uncertainties. 

Scaling analyses for prediction of thermal stratification and mixing in pools and in large 
interconnected enclosures were developed and applied by Peterson and coworkers at UC Berkeley 
[10,11]. A 1-D simulation code BMIX/BMIX++ was also developed to simulate stratification 
development in stably stratified conditions [12]. The ambient fluid volume is represented by 1-D 
transient partial differential equations, and substructures such as free or wall jets are modeled with 
1-D integral models. This allows very large reductions in computational effort compared to 3-D 
CFD modeling. It was validated against a number of benchmark problems [13,14]. However, 
BMIX++ cannot model the transition cases where the fully stratified ambient or well-mixed 
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ambient assumptions break down. For a transient where initially stratified pool is gradually mixed, 
it cannot help to infer about the time scale for such mixing processes. 

Reynolds-Averaged Navier-Stokes (RANS) based CFD approaches are less expensive than 
higher fidelity Large Eddy Simulations (LES), and has been applied in SFR upper plenum 
simulation with very detailed geometric modeling of major structures [15]. However, it is still 
computationally overwhelming for long-transient, complex-flow simulations in engineering 
applications, particularly when sensitivity/uncertainty analysis is needed for design optimizations 
and safety analyses. Multi-scale modeling approaches (achieved by coupling 1-D system and 3-D 
CFD codes) has been tried to simulate large and complex domains by modeling the large volume 
with a CFD code and the rest of the system with a system code [16,17]. This methodology can 
provide detailed information only where needed while providing system level information in the 
rest of the domain. However, coupling different codes employing different solver routines and 
operating at different spatial and temporal scales remains a challenge. A notable fundamental 
problem is that a reliable and accurate coupling scheme is largely missing in the treatment of 
momentum and energy exchange at the boundary between the CFD model and the system model. 
It is very desirable to have an advanced and efficient thermal mixing and stratification modeling 
capability embedded in a system analysis code to improve the accuracy of reactor safety analyses 
and to reduce modeling uncertainties.  

An advanced system analysis tool, SAM [18], is being developed at Argonne National 
Laboratory for advanced non-LWR reactor safety analysis. It aims to provide fast-running, 
modest-fidelity, whole-plant transient analyses capabilities, which are essential for fast turnaround 
design scoping and engineering analyses of advanced reactor concepts. While SAM is being 
developed as a system-level modeling and simulation tool [19,20], advanced modeling techniques 
including a reduced-order three-dimensional module are under development to tackle the issue of 
thermal mixing and stratification modeling in large enclosures of reactor systems during transients.  

This report summarizes the recent progress on the reduced-order flow model developments in 
SAM for thermal stratification and mixing modeling. Three different modeling approaches are 
pursued. The first one is similar to the approach used in conventional system codes which models 
a large enclosure with multiple zero dimensional volumes. The second approach is based on one-
dimensional fluid models with additional terms accounting for the thermal mixing from both 
macroscopic flow circulations and microscopic turbulent mixing. The third approach is based on 
three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid 
conservation equations are modeled with closure models to account for the effects of turbulence. 
The technical basis of the three modeling approaches are discussed first, followed by some initial 
demonstration simulations and validation tests. The details of each modeling approach are 
presented in Chapter 3 through 5, respectively.  
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2 SAM	Overview	
The System Analysis Module (SAM) [18] is an advanced system analysis tool being developed 

at Argonne National Laboratory under the support of U.S. Department of Energy (DOE) Nuclear 
Energy Advanced Modeling and Simulation (NEAMS) program. It aims to be a modern system 
analysis code, which takes advantage of the advancements software design, numerical methods, 
and physical models over the past two decades. SAM focuses on modeling advanced reactor 
concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs 
(fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced 
concepts are distinguished from light-water reactors (LWR) in their use of single-phase, low-
pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. This simple yet 
fundamental change has significant impacts on core and plant design, the types of materials used, 
component design and operation, fuel behavior, and the significance of the fundamental physics 
in play during transient plant simulations.  

SAM is aimed to solve the tightly-coupled physical phenomena including heat generation, heat 
transfer, fluid dynamics, and thermal-mechanical response in reactor structures, systems and 
components in a fully-coupled fashion but with reduced-order modeling approaches to facilitate 
rapid turn-around for design and safety optimization studies. As a new code development, the 
initial effort focused on developing modeling and simulation capabilities of the heat transfer and 
single-phase fluid dynamics responses in reactor systems. This Chapter discusses goals and 
objectives, software structure, the governing theory, as well as current capabilities of the code. In 
the coming years, the SAM code will continuously mature as a modern system analysis tool for 
advanced (non-LWR) reactor design optimization, safety analyses, and licensing support. 

2.1 Ultimate	Goals	and	Objectives	

The ultimate goal of SAM is to be used in advanced reactor safety analysis for design 
optimization and licensing support. The important physical phenomena and processes that may 
occur in reactor systems, structures, and components shall be of interest during reactor transients 
including Anticipated Operational Occurrence (AOO), Design Basis Accident (DBA), and 
additional postulated accidents but not including severe accidents. Typical reactor transients 
include: loss of coolant accidents, loss of flow events, excessive heat transfer events, loss of heat 
transfer events, reactivity and core power distribution events, increase in reactor coolant inventory 
events, and anticipated transients without scram (ATWS).  

As a modern system analysis code, SAM is also envisioned to expand beyond the traditional 
system analysis code to enable multi-dimensional flow analysis, containment analysis, and source 
term analysis, either through reduced-order modeling in SAM or via coupling with other 
simulation tools. Additionally, the regulatory processes in the United States is being evolved to a 
risk-informed approach that is based on first understanding the best-estimate behavior of the fuel, 
the reactor, the reactor coolant system, the engineered safeguards, the balance of plant, operator 
actions, and all of the possible interactions among these elements. To enable this paradigm, an 
advanced system analysis code such as SAM must be able to model the integrated response of all 
of these physical systems and considerations to obtain a best-estimate simulation that includes both 
validation and uncertainty quantification.  

The SAM code is aimed to provide improved-fidelity simulations of transients or accidents in 
an advanced non-LWR, including three-dimension resolutions as needed or desired. This will 
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encompass the fuel rod, the fuel assembly, the reactor, the primary and intermediate heat transport 
system, the balance-of-plant, the containment. Multi-dimension, multi-scale, and multi-physics 
effects will be captured via coupling with other simulation tools, and computational accuracy and 
efficiency will be state-of-the-art. Uncertainty quantification will be integrated into SAM 
numerical simulations. Legacy issues such as numerical diffusion and stability in traditional 
system codes will be addressed and the code will attract broad use across the nuclear energy 
community based on its performance and many advantages relative to the legacy codes. The 
integrated architecture will provide a robust toolset for decision making with full consideration of 
the various disciplines and technologies affecting an issue. 

2.2 Software	Structure	
SAM is being developed as a system-level modeling and simulation tool with higher fidelity 

(compared to existing system analysis tools), and with well-defined and validated simulation 
capabilities for advanced reactor systems. It provides fast-running, modest-fidelity, whole-plant 
transient analyses capabilities. To fulfill the code development, SAM utilizes the object-oriented 
application framework MOOSE [21] and its underlying meshing and finite-element library 
libMesh [22] and linear and non-linear solvers PETSc [23], to leverage the available advanced 
software environments and numerical methods. The high-order spatial discretization schemes, 
fully implicit and high-order time integration schemes, and the advanced solution method (such as 
the Jacobian-free Newton–Krylov (JFNK) method [24]) are the key aspects in developing an 
accurate and computationally efficient model in SAM.  

The software structure of SAM is illustrated in Figure 2-1. In addition to the fundamental 
physics modeling of the single-phase fluid flow and heat transfer, SAM incorporates advances in 
the closure models (such as convective heat transfer correlations) for reactor system analysis 
developed over the past several decades. A set of Components, which integrate the associated 
physics modeling in the component, have been developed for friendly user interactions. This 
component-based modeling strategy is similar to what is implemented in RELAP-7 [25], which is 
also a MOOSE-based system analysis tool (focused on LWR simulations). A flexible coupling 
interface has been developed in SAM so that multi-scale, multi-physics modeling capabilities can 
be achieved by integrating with other higher-fidelity or conventional simulation tools. 
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Figure 2-1. SAM Code Structure  

 

2.3 Governing	Theory	

2.3.1 Fluid	dynamics	

Fluid dynamics is the main physical model of the SAM code. SAM employs a standard one-
dimensional transient model for single-phase incompressible but thermally expandable flow. The 
governing equations consist of the continuity equation, momentum equation, and energy 
equations. A three-dimensional module is also under development to model the multi-dimensional 
flow and thermal stratification in the upper plenum or the cold pool of an SFR. Additionally, a 
subchannel module will be developed for fuel assembly modeling.  

2.3.2 Heat	transfer	

Heat structures model heat conduction inside solids and permit the modeling of heat transfer 
at interfaces between solid and fluid components. Heat structures are represented by one-
dimensional or two-dimensional heat conduction in Cartesian or cylindrical coordinates. 
Temperature-dependent thermal conductivities and volumetric heat capacities can be provided in 
tabular or functional form. Heat structures can be used to simulate the temperature distributions in 
solid components such as fuel pins or plates, heat exchanger tubes, and pipe and vessel walls, as 
well as to calculate the heat flux conditions for fluid components. Flexible conjugate heat transfer 
and thermal radiation modeling capabilities are also implemented in SAM.  

2.3.3 Closure	Models	

The fluid equation of state (EOS) model is required to complete the governing flow equations, 
which are based on the primitive variable formulation; therefore, the dependency of fluid 
properties and their partial derivatives on the state variables (pressure and temperature) are 
implemented in the EOS model. Some fluid properties, such as sodium, air, salts like FLiBe and 
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FLiNaK, have been implemented in SAM. Empirical correlations for friction factor and convective 
heat transfer coefficient are also required in SAM because of its one-dimension approximation of 
the flow field. The friction and heat transfer coefficients are dependent on flow geometries as well 
as operating conditions during the transient.  

2.3.4 Mass	transport	model	development		

The mass transport modeling capability is needed to model sources and transport of particles 
for a number of applications, such as tritium transport, delayed neutron precursor drift, radioactive 
isotope transport for molten salt fueled/cooled systems. A general passive scalar transport model 
has been implemented in SAM, and it can be used to track any number of species carried by the 
fluid flow.  

2.3.5 Reactor	Kinetics	model	development	

SAM employs a built-in point kinetics model, including reactivity feedback and decay heat 
modeling. Since this development is a relatively new effort, enhancements of the reactivity 
feedback modeling are also needed to include additional reactivity feedback mechanisms due to 
thermal expansion effects. 

2.3.6 Numerical	Methods	

SAM is a finite-element-method based code. The “weak forms” of the governing equations are 
implemented in SAM. It uses the Jacobian-Free Newton Krylov (JFNK) solution method to solve 
the equation system. The JFNK method uses a multi-level approach, with outer Newton’s iterations 
(nonlinear solver) and inner Krylov subspace methods (linear solver), in solving large nonlinear 
systems. The concept of ‘Jacobian-free’ is proposed, because deriving and assembling large 
Jacobian matrices could be difficult and expensive. The JFNK method has become an increasingly 
popular option for solving large nonlinear equation systems and multi-physics problems, as 
observed in a number of different disciplines [24].  One feature of JFNK is that all the unknowns 
are solved simultaneously in a fully coupled fashion. This solution scheme avoids the errors from 
operator splitting and is especially suitable for conjugate heat transfer problems in which heat 
conduction in a solid is tightly coupled with fluid flow.  
 

2.4 Overview	of	Current	Capabilities	
To develop a system analysis code, numerical methods, mesh management, equations of state, 

fluid properties, solid material properties, neutronics properties, pressure loss and heat transfer 
closure laws, and good user input/output interfaces are all indispensable. SAM leverages the 
MOOSE framework and its dependent libraries to provide JFNK solver schemes, mesh 
management, and I/O interfaces while focusing on new physics and component model 
development for advanced reactor systems. The developed physics and component models provide 
several major modeling features: 

1. One-D pipe networks represent general fluid systems such as the reactor coolant loops. 
2. Flexible integration of fluid and solid components, able to model complex and generic 

engineering system. A general liquid flow and solid structure interface model was 
developed for easier implementation of physics models in the components. 
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3. A pseudo three-dimensional capability by physically coupling the 1-D or 2-D components 
in a 3-D layout. For example, the 3-D full-core heat-transfer in an SFR reactor core can be 
modeled. The heat generated in the fuel rod of one fuel assembly can be transferred to the 
coolant in the core channel, the duct wall, the inter-assembly gap, and then the adjacent 
fuel assemblies. 

4. Pool-type reactor specific features such as liquid volume level tracking, cover gas 
dynamics, heat transfer between 0-D pools, fluid heat conduction, etc. These are important 
features for accurate safety analyses of SFRs or other advanced reactor concepts. 

5. A computationally efficient multi-dimensional flow model is under development, mainly 
for thermal mixing and stratification phenomena in large enclosures for safety analysis. It 
was noted that an advanced and efficient thermal mixing and stratification modeling 
capability embedded in a system analysis code is very desirable to improve the accuracy 
of advanced reactor safety analyses and to reduce modeling uncertainties.  

6. A general mass transport capability has been implemented in SAM based on the passive 
scalar transport. The code can track any number of species carried by the fluid flow for 
various applications.  

7. An infrastructure for coupling with external codes has been developed and demonstrated. 
The code coupling with STAR-CCM+ [26], SAS4A/SASSYS-1 [27], Nek5000, and 
BISON [28] have been demonstrated, while the coupling with PRONGHORN, 
RattleSnake, and PORTEUS codes are being planned. 

 

The examples of SAM simulation results of advanced reactors are shown in Figure 2-2 to 
Figure 2-4 for SFR, FHR, and MSR.  

    
(a) SAM model with 61 core channels    (b) Coupled SAM and CFD code simulation 

Figure 2-2. SAM simulation results of an SFR [26] 

DHX$
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Hot	Pool	
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Figure 2-3. SAM simulation results of an FHR [29] 

 
(a) Power 

Figure 2-4. SAM simulation results of a simple MSR primary loop during a postulated loss-of-
flow transient [30] 
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3 0-D	Volume	Modeling	Approach	

3.1 0-D	Mixing	Model	

As discussed in Chapter 1, current major system analysis codes only have 0-D models for 
thermal mixing and stratification in large enclosures. For example, SAS4A/SASSYS-1 code 
provides lumped-volume-based 0-D models that can give very approximate results and can only 
handle simple cases with one mixing source.  The basic concept is based on that the lumped 
enclosure is made up of a small number of distinct temperature regions, separated by horizontal 
interfaces.  Depending on the momentum and buoyancy of the jet flow into the large enclosures, 
well mixed case, two-zone with a negative buoyant jet case, two-zone with a positive buoyant jet 
case, and even more complex three-zone cases may form. The total jet entrainment, zone interface 
location, and average temperatures in each zone can be estimated by empirical correlations. Since 
the methods are based on scaled experimental data, using those models for SFR designs with 
different hot/cold pool configurations tends to result in large uncertainties. 

A general multiple 0-D volume modeling approach is also implemented in SAM, as shown in 
Figure 3-1. A large enclosure is modeled by a number of 0-D average volumes, where inter-volume 
directional flow and mixing flows are allowed.  

 
Figure 3-1. Multi-Volume 0-D Pool Model. 

 

A special SAM Component, StagnantVolume, has been implemented to models a stagnant 
liquid volume, which has no connections to 1-D fluid components but is allowed to connect to a 
0-D volume or 1-D or 2-D heat structures for heat transfer. It is assumed that there is no net mass 
transfer between StagnantVolume and the connecting 0-D volumes. The governing equation of the 
energy conservation for the StagnantVolume can be given as:  

𝑑(𝜌𝑉𝐻)
𝑑𝑡 + 𝑄.

/

.01

= 0	 (3-1) 

In which,  
 𝜌: average density of the StagnantVolume component; 
 𝑉: total volume of the component; 

Upper	Pool

Bottom	Pool

Cover	Gas

outflow

inflow
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 𝐻: average enthalpy of the volume component. 
 𝑡: time; 
 𝑛: the number of coupling heat transfer components; 
 𝑄: heat transfer with coupled heat structures or 0-D volumes; 

For convective heat transfer with heat structures,  

𝑄 = ℎ78/$(𝑇: − 𝑇$8<)	𝑑𝐴	.	 (3-2) 
In which,  
 ℎ78/$: convective heat transfer coefficient; 
 𝑇:: structure wall temperature;  
 𝑇$8<: volume temperature. 
For heat transfer with other 0-D volumes through thermal mixing, 
𝑄 = 𝑚@.A∆𝐻.	 (3-3) 
 In which,  
 𝑚@.A: the effective mixing flow between 0-D volumes; 
 ∆𝐻: enthalpy differences between 0-D volumes. 

 

3.2 Demonstration	Case	

The feasibility of the multiple 0-D volume modeling approach was tested using an available 
EBR-II test BOP-302R. BOP-302R was a loss of heat sink test where the intermediate sodium 
pump was tripped without scramming the control rods or tripping the primary pumps. This test 
was driven by increasing core inlet temperatures, which were a result of the diminished IHX heat 
rejection due to the lower intermediate sodium flow rates. Strong thermal stratification is expected 
in the primary vessel (cold pool), where the IHX outlet and the pump inlets are located in the upper 
part of the vessel.  

To correctly predict the core inlet temperature, the thermal stratification in the cold pool needs 
to be properly considered. This is accounted for in the SAM simulation with a two-volume pool 
model, in which the upper volume connects with the main primary pumps and the IHX, and the 
lower volume is stagnant but the mixing flow with the upper volume and the convective heat 
transfer with the immersed piping walls are considered. Similar modeling approaches were also 
adopted in the SAS4A/SASSYS-1 model. In the SAM BOP-302R simulation, the mixing flow 
between the upper and lower cold pool is assumed to be 50% of the primary core flow rate.  

Simulation results of the BOP-302R test are shown in Figure 3-2 through Figure 3-4. Very 
good agreement was found among the SAM and SAS simulations and the test results. More details 
on the SAM model and simulation results can be found an earlier paper [31]. 

SAM predictions of the plena temperatures during BOP-302R test are shown in Figure 3-2. 
SAM predictions of plena temperatures during BOP-302R test. The upper cold pool temperature 
increases rapidly at the beginning of the transient due to the loss-of-cooling in the IHX. As the 
primary loop coolant flow rate is largely unchanged throughout the transient, the core outlet 
plenum temperature drops with the decrease of the core power. As the IHX primary outlet 
temperature decreases and the continuous mixing between the upper and lower cold pool, the upper 
cold pool temperature decreases eventually after reaching a peak. The temperature responses in 
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the high- and low-pressure core inlet plena are similar to the upper cold pool, and the temperature 
at the low-pressure inlet plenum is slightly lower due to the heat loss to the lower cold pool through 
the long piping. The lower cold pool temperature response is much slower compared to other 
volumes, as it does not directly participate in the primary coolant flow loop. Eventually all plena 
temperatures became very close to each other as the lower cold pool was heated up.  

The comparisons of high-pressure inlet plena temperatures from the SAM and SAS simulations 
and the test results are shown in Figure 3-3. Very good agreement was achieved for both the initial 
heat up rates and the later pseudo-equilibrium states. It is demonstrated that the thermal 
stratification in the cold pool during the test can be modeled with a relatively simple multiple 0-D 
volume model. Note that the mixing flow rates between 0-D volumes are crucial to accurately 
model the heat transfer between 0-D volumes, and the mixing flow rates can be derived from 
uRANS-based CFD simulations.  

The core outlet temperature of the driver fuel subassembly 6C4 is shown in Figure 3-4. The 
transient trends among the experiment and the two simulations are very similar, but the initial 
increase of core outlet temperature was not observed in the test results. It is suspected again that 
the mixing between the subassembly 6C4 and the adjacent low power subassemblies reduced its 
outlet temperature measurement in the test. Very similar results are found between the SAM and 
SAS simulations.  

 
Figure 3-2. SAM predictions of plena temperatures during BOP-302R test 
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Figure 3-3. High-pressure inlet plenum temperature during BOP-302R test 

 
Figure 3-4. Subassembly 6C4 outlet temperature during BOP-302R test 
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4 One-D	Modeling	Approach	

4.1 1D	Axial	Mixing	Model	

The SAM 1-D modeling approach is based on similar concept of multiple 0-D volume 
approach that the large enclosure can be divided into arbitrary number of sub-volumes, separated 
by horizontal interfaces. The inter-volume energy exchange can be modeled by both advection and 
flow mixing. The one-dimensional fluid conservation equations are used for the 1D axial mixing 
model. To consider the flow mixing, the energy conservation equation can be written as: 

𝜕 𝜌𝐻
𝜕𝑡 +

𝜕 (𝜌𝑢 + 𝐺@.A)𝐻
𝜕𝑧 = 𝛻 𝑘𝛻𝑇 	 (4-1) 

Where 𝐺@.A is the mixing mass flux, and 𝐺@.A = 𝜌𝑢@, in which 𝑢@ is the mixing flow velocity. 
Note that additional models for the mixing mass flux is needed, for which the high-fidelity CFD 
simulations using LES and uRANS can assist in the closure model developments. Special 
treatments are implemented for Eq. 4-1 in the SAM code because of its finite-element formulation 
while the flow mixing only occurs at the finite element boundary by definition.  

A new governing equation (Eq. 4-2) is introduced for the mixing velocity. Note that its form 
is not originated from momentum conservation, but derived based on the energy conservation 
equation. The left side of the equation is the transport part (time derivative and advection terms), 
while the right side includes the diffusion term, resistance term, and the source terms. Recognizing 
three major contributions of the mixing flow, including local flow velocity, geometry, and the 
buoyancy effects, two parameters 𝐶"# and 𝐶"$ are introduced in the mixing velocity equation.  

𝜕𝜌𝑢@
𝜕𝑡 +

𝜕 𝜌𝑢𝑢@
𝜕𝑧 = 𝜇𝛻J𝑢@ +

𝑐L𝑓
2𝐷 𝜌𝑢@

J + 𝐶"#𝛽𝜌𝑔𝛻𝑇 −
𝑐L𝑓
2𝐷 𝜌(𝐶"$𝑢)

J	 (4-2) 

Where, 
 𝑢@ is the mixing flow velocity; 
 u is the 1-D average flow velocity; 
 𝜇 is the dynamic viscosity;   
𝑓 is the friction coefficient using the average flow velocity u and the equivalent hydraulic 
diameter D;  
𝑐L is the multiplier of the friction coefficient; 
𝛽 is the thermal expansion coefficient of the fluid; 
𝛻𝑇 is the temperature gradient; 
𝐶"# is the coefficient for the buoyancy effects in the specific geometry; 𝐶"# has a default 

value of 1 if it is not provided by users.  
𝐶"$ is the coefficient for the velocity effects in the specific geometry. 

 

4.2 Verification	Test	Cases	
The 1-D axial mixing model was tested for a generic simple 1-D channel flow, with geometry 

and boundary conditions specified in Table 4-1. 
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Table 4-1. Geometry and Boundary Conditions of a Single-phase Flow Test 
Parameters  Values 
Hydraulic Diameter (m)  0.02 
Length (m) 1 
Flow Area (m2) 0.000314 
Heat Source (W3) 0 
Inlet velocity (m/s)  0.1 
Inlet temperature (K)  user-defined function 

Two test cases are developed, i.e. the inlet temperature varied following two step changes or 
oscillated following a sinusoidal distribution. 

𝑇./(𝑡) =

628, 𝑡 < 0
628 + 100𝑡,			0 ≤ 𝑡 < 1
728, 1 ≤ 𝑡 < 11

728 − 100𝑡, 11 ≤ 𝑡 < 12
628, 𝑡 ≥ 	12

	 (4-3) 

𝑇./(𝑡) = 628 + 100𝑠𝑖𝑛	(𝜋𝑡)	 (4-4) 

The inlet velocity is fixed, 𝑢./ 𝑡 = 0.5	𝑚/𝑠; and the initial pipe temperate is at 628 K. If the 
flow channel is unheated, the fluid temperature at any location z at time t can be linked with the 
inlet temperature (if fluid conduction and flow mixing are ignored): 

𝑇 𝑧, 𝑡 = 𝑇(0, 𝑡 −
𝑧
𝑢)	 (4-5) 

The test cases listed in Table 4-2 and Table 4-3 were simulated with different modeling 
approaches and modeling parameters for the temperature step change test problem and the 
temperature oscillation problem, respectively. For the single 0D volume model, the 1-D channel 
is modeled as a 0-D volume and the inlet flow will mix with all the fluid in the channel 
instantaneously.  
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Table 4-2. Test Cases of Inlet Temperature Step Changes 

Test Cases Modeling Approaches Modeling Parameters 

1.1 Single 0D volume model - 

1.2 1D pipe model without axial mixing  - 

1.3 1D pipe model with axial mixing  𝐶"# = 1, 𝐶"$ = 0 

1.4 1D pipe model with axial mixing 𝐶"# = 1, 𝐶"$ = 0.1 

1.5 1D pipe model with axial mixing 𝐶"# = 1, 𝐶"$ = 1 

1.6 1D pipe model with axial mixing 𝐶"# = 0, 𝐶"$ = 0.1	

1.7 1D pipe model with axial mixing 𝐶"# = 0, 𝐶"$ = 1	
 

Table 4-3. Test Cases of Inlet Temperature Oscillation 

Test Cases Modeling Approaches Modeling Parameters 

2.1 Single 0D volume model - 

2.2 1D pipe model without axial mixing  - 

2.3 1D pipe model with axial mixing  𝐶"# = 1, 𝐶"$ = 0 

2.4 1D pipe model with axial mixing 𝐶"# = 1, 𝐶"$ = 0.1 

2.5 1D pipe model with axial mixing 𝐶"# = 1, 𝐶"$ = 1 

2.6 1D pipe model with axial mixing 𝐶"# = 0, 𝐶"$ = 0.1	

2.7 1D pipe model with axial mixing 𝐶"# = 0, 𝐶"$ = 1	
 

For Test Cases 1.1 through 1.5, the transient responses of the outlet temperature due to inlet 
temperature step changes are shown in Figure 4-1. The inlet temperature during the transient is 
also plotted as a reference. Clear differences were observed between the 0-D volume and 1D 
approaches. The outlet temperature responded simultaneously in the 0-D test case because of the 
perfect and instantaneous mixing modeling approach. A delay in outlet temperature response were 
observed in all 1-D test cases.  

It is seen in Figure 4-1 that the axial mixing model only has minor effects on the transient 
responses of the outlet temperature. The differences between the axial mixing cases (Case 1.3-1.5) 
and the reference 1D case (Case 1.2) are small. This may be due to the temperature gradients were 
mostly zero in the channel expect narrow stratified regions. The buoyancy force was therefore zero 
except the narrow regions where temperature gradients were high. It is also observed the buoyancy 
effects are stronger than the velocity effects in this test problem. This is perhaps due to the small 
𝐶"$ used in the simulations.  

To investigate the effects of local velocity to flow mixing, two more test cases (Case 1.6 and 
1.7) were simulated without the buoyancy effects activated (𝐶"# = 0). The transient responses of 
the outlet temperature are shown in Figure 4-2. It is confirmed that the velocity effects are very 
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small with smaller 𝐶"$. It is also interesting to note that for Case 1.3 – 1.5, the outlet temperature 
is almost identical to the reference 1D case (Case 1.2) responding the second inlet temperature 
sharp change. During this time period, the buoyancy force is negative as the inlet temperature is 
lower than the pipe temperature. The strong buoyancy effects balanced the velocity effects, and 
the mixing velocity is almost equal to zero after the second inlet temperature change. When the 
buoyancy effects were de-activated in the simulation (Case 1.6 and 1.7), the effects of axial mixing 
model due to velocity effects were observed (in Figure 4-2) for the second temperature change as 
well.  

 

 
Figure 4-1. Outlet temperature response during the inlet temperature step change transient 
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Figure 4-2. Outlet temperature response during the inlet temperature step change transient, 

buoyancy effects disabled 

 
For Test Cases 2.1 through 2.5, the transient responses of the outlet temperature due to 

continuous changes of inlet temperature of a sinusoid wave function are shown in Figure 4-3. 
Again, it is observed that the outlet temperature responded simultaneously in the 0-D test case; 
while delayed effects were observed in all 1-D test cases. It is also shown the axial mixing model 
had stronger effects on the transient responses of the outlet temperature, comparing to the previous 
test problem. It is again observed the buoyancy effects are stronger than the velocity effects in this 
test problem, possibly due to the small 𝐶"$ used in the simulations. 

To investigate the effects of local velocity to flow mixing, two more test cases (Case 2.6 and 
2.7) were simulated without the buoyancy effects activated (𝐶"# = 0). The transient responses of 
the outlet temperature are shown in Figure 4-4. It is shown that the velocity effects are very strong, 
even with smaller 𝐶"$. It is also interesting to note that for Case 1.6 – 1.7, the outlet temperature 
almost followed sinusoid functions with smaller oscillating magnitude, but not perfect sinusoid 
functions for Case 1.3-1.5. The buoyancy effects were positive or negative depending on the local 
temperature gradient, while the velocity effects were always positive. The buoyancy effects could 
be balanced by the velocity effects when the temperature gradients were positive (inlet temperature 
was decreasing so that lower temperature and heavier fluid were in the lower elevation) during the 
transient.  
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Figure 4-3. Outlet temperature response during the inlet temperature oscillation transient 

 
Figure 4-4. Outlet temperature response during the inlet temperature oscillation transient, 

buoyancy effects disabled 
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4.3 Demonstration	Test	Case	of	a	Large	Tank	

To verify the applicability of the developed 1-D axial mixing model, a new test problem was 
developed based on the geometry and operating conditions of the upper plenum in the Advanced 
Burner Test Reactor (ABTR) design [32]. Transient CFD simulations of a stand-alone tank model 
are performed to provide the reference solutions.  

The ABTR core outlet plenum is modeled as cylindrical tank, with parameters summarized in 
Table 4-4. The tank inlet conditions are also defined based on the representative conditions during 
a protected loss-of-flow transient, for which the core outlet plenum inlet flow rates and 
temperatures are provided as boundary conditions, shown in Figure 4-5.  

Table 4-4. Geometric data of the Tank  

Parameters Values 

Inlet Area (m2) 0.1476 
Flow Area (m2) 5.975 
Total Volume (m3)  46.255 
Liquid Level (m) 7.74  
Tank Height (m) 10 
Outlet Elevation (m) 4.1 

 

4.3.1 CFD	Simulation	Results	

uRANS (unsteady Reynolds-Averaged Navier-Stokes) -based simulations of the stand-alone 
tank case are being performed using the commercial CFD code STAR-CCM+ [33]. The CFD 
simulation results of the stand-alone tank model can be used as a reference to guide the 
development of the 0-D stratified volume model, 1-D mixing model, or other reduced-order 
models in system codes. A uniform inlet profile was used for both temperature and velocity at the 
tank inlet. The outlet boundary was extruded slightly in order to prevent potential reversed flow. 
Linear interpolation was used between the inlet boundary condition data points for transient 
boundary conditions. The tank is initially uniform in temperature. A slip wall condition is used at 
the top surface for simplicity.  

Results for the tank outlet temperature, along with the inlet temperature and velocity, are 
provided in Figure 4-5. The inlet temperature drops sharply, causing cold sodium to be transported 
by the inlet jet to the upper portions of the tank, leading to a corresponding decrease in the outlet 
temperature. However, as the inlet velocity reduces, the cold mass of sodium sinks to the bottom 
of the tank, as seen in the remaining Figures (velocity at the outlet center plane, and temperature 
at the half-symmetry plane). This displaces the warmer sodium present around the periphery of the 
bottom of the tank and pushes it upward around the cylindrical wall. This is the reason for the brief 
increase in outlet temperature after the initial decrease.  

After this point, the flow stratifies and the cold jet interacts with the stratified layer. As it 
pushes the warm sodium upward, waves are created in the layer, and eventually there are direct 
flow interactions between the jet and the outlet. These phenomena are the cause of the waviness 
in the outlet temperature profile after the large temperature drop. At around 400s the inlet velocity 
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reaches its steady low-flow condition, and combined with the increasing inlet temperature leads to 
a warm jet that rises to the top of the tank. This results in a slow and relatively steady heat-up of 
the tank. 

 
Figure 4-5. Inlet/Outlet Temperature and Velocity over the first 1000s of the transient. 

 

  
Figure 4-6. Velocity (left) and temperature (right) at t=10s. 
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Figure 4-7.  Velocity (left) and temperature (right) at t=20s. 

  
Figure 4-8. Velocity (left) and temperature (right) at t=30s. 

  
Figure 4-9. Velocity (left) and temperature (right) at t=40s. 
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Figure 4-10.  Velocity (left) and temperature (right) at t=50s. 

  
Figure 4-11. Velocity (left) and temperature (right) at t=60s. 

  
Figure 4-12. Velocity (left) and temperature (right) at t=100s. 
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Figure 4-13. Velocity (left) and temperature (right) at t=200s. 

  
Figure 4-14. Velocity (left) and temperature (right) at t=300s. 

  
Figure 4-15. Velocity (left) and temperature (right) at t=500s. 
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Figure 4-16. Velocity (left) and temperature (right) at t=1000s. 

 

4.3.2 SAM	Simulation	Results	

Similar to the test problem defined in Section 4.2, a number of test cases were simulated with 
different modeling strategies for the tank problem, listed in Table 4-5.  

Table 4-5. Test Cases of Tank Demonstration Problem 
Test 

Cases Modeling Approaches 

3.1 1D pipe model for the lower part of the tank, no upper part, no axial mixing  

3.2 1D pipe model for the lower part of the tank, no upper part  

3.3 1D pipe model for the lower part of the tank, single 0D volume model for the 
upper part 

3.4 1D pipe model for the lower part of the tank, three 0D volume model for the 
upper part 

 

The tank outlet temperature responses during the transient are shown in Figure 4-17 for various 
modeling approaches. With increasing complexities of the model, the SAM simulation results 
became closer to the reference CFD simulation results. For Case 3.1 and 3.2, the upper part of the 
tank (above the outlet pipe) was neglected in the models. It is seen that the outlet temperature 
responses were far away from the reference CFD simulation results. From Figure 4-6 to Figure 4-
16, it is clearly observed the upper part was not stagnant and strongly participated the flow 
circulation and mixing in the tank. Once the upper tank is modeled, the simulation results are much 
closer to the CFD results. This preliminary demonstration case provides us some confidence that 
the 1D axial mixing model could simulate the macroscopic tank behavior during the transient with 
both accuracy and efficiency.   
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Figure 4-17. Outlet temperature response during the postulated loss-of-flow transient 
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5 Multi-Dimensional	Fluid	Model	
While SAM is being developed as a system-level modeling and simulation tool, a three-

dimensional flow module is also under development. While the 3D module will be useful for useful 
for a large number of reactor applications, the primary focus so far is to tackle the issue of thermal 
mixing and stratification modeling in large enclosures of reactor systems. 

5.1 SAM	3-D	Fluid	Model	and	Current	Status		

The main objective of SAM 3-D fluid model is to provide a computationally efficient modeling 
capability to model the multi-dimensional flow and thermal stratification phenomena in large 
enclosures in nuclear systems. To achieve this, the key modeling approaches include: 

1) Solving the full 3-D fluid equation; 
2) Using only coarse computational meshes; 
3) No turbulence modeling; 
4) Developing closure models to account for the effects of turbulence and the use of coarse 

mesh in momentum and energy transport.  

The transport equations for three-dimensional single-phase flow in a fluid domain can be 
described as a set of partial differential equations. The mass, momentum, and energy equations are 
closed by the equation of state of the fluid. It can be written in the conservative form (Equation 5-
1) or in the non-conservative form (Equation 5-2).  

𝜕𝜌
𝜕𝑡 +

𝜕 𝜌𝑢
𝜕𝑥 +

𝜕 𝜌𝑣
𝜕𝑦 +

𝜕 𝜌𝑤
𝜕𝑧 = 0 

𝜕𝜌𝑢
𝜕𝑡 +

𝜕 𝜌𝑢𝑢
𝜕𝑥 +

𝜕 𝜌𝑢𝑣
𝜕𝑦 +

𝜕 𝜌𝑢𝑤
𝜕𝑧 = −

𝜕𝑝
𝜕𝑥 + 𝛻 ∙ 𝜏A 

𝜕𝜌𝑣
𝜕𝑡 +

𝜕 𝜌𝑣𝑢
𝜕𝑥 +

𝜕 𝜌𝑣𝑣
𝜕𝑦 +

𝜕 𝜌𝑣𝑤
𝜕𝑧 = −

𝜕𝑝
𝜕𝑦 + 𝛻 ∙ 𝜏f 

𝜕𝜌𝑤
𝜕𝑡 +

𝜕 𝜌𝑤𝑢
𝜕𝑥 +

𝜕 𝜌𝑤𝑣
𝜕𝑦 +

𝜕 𝜌𝑤𝑤
𝜕𝑧 = −

𝜕𝑝
𝜕𝑧 + 𝛻 ∙ 𝜏g + 𝜌𝑔 

𝜕 𝜌ℎ
𝜕𝑡 +

𝜕 𝜌𝑢ℎ
𝜕𝑥 +

𝜕 𝜌𝑣ℎ
𝜕𝑦 +

𝜕 𝜌𝑤ℎ
𝜕𝑧 = 𝛻 𝑘hLL𝛻𝑇 + 𝑞$jjj 

𝜌 = 𝜌(𝑝, 𝑇) 

(5-1) 

In which, 𝑡: time; 𝑥, 𝑦, 𝑧 : the coordinate; 𝜌: coolant density; (𝑢, 𝑣, 𝑤): velocity vector; 𝑔: the 
acceleration due to gravity; 𝑝: pressure; 𝑇: temperature; h: enthalpy; 𝜏: the shear stress and 
dependent on the velocity gradients and fluid properties, and for Newtonian fluid, 𝜏.. = 2𝜇 k$l

kAl
−

J
m
𝜇𝛻𝑣, and 𝜏.n = 𝜏n. = 𝜇	(k$l

kAo
+ k$o

kAl
); 𝑘hLL: effective thermal conductivity, and	𝑘hLL 	= 𝑘 + 𝛼, 

which accounts for both normal thermal conductivity and additional diffusivity due to turbulence 
and the use of coarse mesh; 𝑞$jjj: volumetric heat source.  
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𝜕𝜌
𝜕𝑡 +

𝜕 𝜌𝑢
𝜕𝑥 +

𝜕 𝜌𝑣
𝜕𝑦 +

𝜕 𝜌𝑤
𝜕𝑧 = 0	

𝜌
𝜕𝑢
𝜕𝑡 + 𝜌𝑢

𝜕𝑢
𝜕𝑥 + 𝜌𝑣

𝜕𝑢
𝜕𝑦 + 𝜌𝑤

𝜕𝑢
𝜕𝑧 = −

𝜕𝑝
𝜕𝑥 + 𝛻 ∙ 𝜏A	

𝜌
𝜕𝑣
𝜕𝑡 + 𝜌𝑢

𝜕𝑣
𝜕𝑥 + 𝜌𝑣

𝜕𝑣
𝜕𝑦 + 𝜌𝑤

𝜕𝑣
𝜕𝑧 = −

𝜕𝑝
𝜕𝑦 + 𝛻 ∙ 𝜏f	

	𝜌
𝜕𝑤
𝜕𝑡 + 𝜌𝑢

𝜕𝑤
𝜕𝑥 + 𝜌𝑣

𝜕𝑤
𝜕𝑦 + 𝜌𝑤

𝜕𝑤
𝜕𝑧 = −

𝜕𝑝
𝜕𝑧 + 𝛻 ∙ 𝜏g + 𝜌𝑔	

	𝜌
𝜕ℎ
𝜕𝑡 + 𝜌𝑢

𝜕ℎ
𝜕𝑥 + 𝜌𝑣

𝜕ℎ
𝜕𝑦 + 𝜌𝑤

𝜕ℎ
𝜕𝑧 = 𝛻 𝑘hLL𝛻𝑇 + 𝑞$jjj	

𝜌 = 𝜌(𝑇)	

(5-2) 

If the incompressible approximation for the shear stress term is used: 

𝛻 ∙ 𝜏A = 𝜇𝛻J𝑣A = 	𝜇
𝜕J𝑢
𝜕𝑥J +

𝜕J𝑢
𝜕𝑦J +

𝜕J𝑢
𝜕𝑧J  (5-3) 

 

Because of its dependence on the MOOSE framework, the SAM 3-D fluid model is also 
implemented in finite element method (FEM). It is well known that finite element analysis of 
incompressible flows requires stabilization to avoid potential numerical instabilities. The presence 
of advection terms (first order terms) in the governing equations can result in spurious node-to-
node oscillations [34]. The Streamline-Upwind/Petrov-Galerkin (SUPG) and the Pressure-
Stabilizing/Petrov-Galerkin (PSPG) scheme are implemented in SAM to resolve the numerical 
instability issues. In SAM, the weak forms of the PSPG/SUPG scheme are implemented as:  
kq
kr
+ 𝛻𝜌𝑣, 𝜓  +	 𝜌 k$

kr
+ 𝜌𝑣𝛻 ∙ 𝑣 + 𝛻𝑝 − 𝛻 ∙ 𝜏 − 𝜌𝑓, 𝜏tutv𝛻𝜓 = 0 

kq$
kr
+ 𝛻𝜌𝑣𝑣 + 𝛻𝑝 + −𝛻 ∙ 𝜏 − 𝜌𝑓, 𝜓   

                        +	 𝜌 k$
kr
+ 𝜌𝑣𝛻 ∙ 𝑣 + 𝛻𝑝 − 𝛻 ∙ 𝜏 − 𝜌𝑓, 𝜏uwtv,@𝑣 	 ∙ 𝛻𝜓 = 0	  

k qx
kr

+ 𝛻 ∙ 𝜌ℎ𝑣 − 𝛻 𝑘hLL𝛻𝑇 − 𝑞jjj, 𝜓   

																							+ 𝜌 kx
kr
+ 𝜌𝑣𝛻ℎ − 𝛻 𝑘hLL𝛻𝑇 − 𝑞jjj, 𝜏uwtv,h𝑣 	 ∙ 𝛻𝜓 = 0	  

(5-4) 

in which 𝜓 is the test function; 𝜏tutv , 𝜏uwtv,@, and  𝜏uwtv,h are the stabilization parameters that 
weights the perturbations; and 𝑓, 𝜓 = 𝜓 ∙ 𝑓	𝑑Ωz , is an expression of the volume integral.  

Note that the regular residuals of all conservation equations are calculated based on the 
conservative form (Equation 5-1); while the residuals of the stabilization terms are calculated 
based on the non-conservative form (Equation 5-2). This formulation not only ensures the 
conservation laws, but also is easier to be implemented. A review of stabilized finite element 



 Advanced	Model	Developments	in	SAM	for	Thermal	Stratification	Analysis	
September	2018	

 

ANL/NSE-18/7	 28	 	
	

formulations for incompressible flow, including the SUPG and PSPG schemes, can be found in 
Reference [35].  

Judicious selection of the stabilization parameters, 𝜏tutv  and 𝜏uwtv , plays a key role in 
determining the stability and accuracy of the formulations. The UGN-based stabilization 
parameters defined in Reference [36] are adapted in the SAM 3-D fluid model. The stabilization 
parameters are defined as:  

𝜏tutv =
2
∆𝑡

J

+
2𝑈
ℎ

J

+
4𝜈
ℎJ

J ~1J
 

𝜏uwtv,@ =
2
∆𝑡

J

+
2 𝑣
ℎ

J

+
4𝜈
ℎJ

J ~1/J

 

𝜏uwtv,h =
2
∆𝑡

J

+
2 𝑣
ℎ

J

+
4𝛼	
ℎJ

J ~1/J

	

(5-5) 

Where h is the element length scale; 𝑣 is local velocity; ∆𝑡 is the time step size; ν is the kinematic 
viscosity; 𝛼 is the thermal diffusivity, 𝛼 = �

q��
;  and U is a global scaling velocity. If U were not 

defined in the simulation, the local velocity magnitude would be used.  

The methodology presented above is very similar to the 1-D FEM model in SAM [19,20]. For 
computationally efficient modeling of the multi-dimensional flow in a coarse-grid CFD (CGCFD) 
approach, SAM does not implement any RANS-based turbulence models. Instead, it relies on 
closure models to close the equation system for the shear stress and the effective diffusivity terms. 
For laminar flow, the full set of fluid equations is solved, in which the shear stress terms are directly 
modeled.  

𝜏.. = 2𝜇
𝜕𝑣.
𝜕𝑥.

−
2
3 𝜇𝛻𝑣 

𝜏.n = 𝜏n. = 𝜇	(
𝜕𝑣.
𝜕𝑥n

+
𝜕𝑣n
𝜕𝑥.

) 
(5-6) 

For turbulent flow, additional closure models will be developed to account for the effects of 
turbulence and the use of coarse mesh in momentum and energy transport. The porous medium 
formulation has been implemented as an option in the SAM 3-D module, in which 𝛻 ∙ 𝜏 = 𝛼 𝑣 𝑣 +
𝛽𝑣, 𝛼 and 𝛽 are porous resistance coefficients. A multi-scale modeling hierarchy is being pursued 
to develop practical predictive capability at the CGCFD level. High-resolution LES or u-RANS 
simulations will be leveraged to capture the fine details of the phenomena and to inform the needed 
closure model development.  

The framework of a 3-D FEM flow model has been developed and implemented in SAM. To 
prevent the potential numerical instability issues, the SUPG and PSPG formulations have been 
implemented. Several verification and validation tests were performed, including lid-driven cavity 
flow, natural convection inside a cavity, and laminar flow in a channel of parallel plates. Based on 
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the comparisons with the analytical solutions and experimental results, it is demonstrated that the 
developed 3-D fluid model can perform very well for a range of laminar flow problems. For 
example, SAM simulation results of natural convection flow in a square cavity is shown in Figure 
5-1. very good agreements were found between SAM simulation results and the experimental 
results [38]. More details on the SAM 3-D fluid model and the initial verification and validation 
results can be found an earlier paper [37]. 

This 3-D flow model is based on solving the primitive variables in the conservative form of 
the governing equations for incompressible but thermally expandable flows. Combined with the 
use of the JFNK solution method and high-order discretization schemes, this flow model has great 
potential for both efficient and accurate multi-dimensional flow simulations. Continued efforts 
have been focused on closure model developments based on high-fidelity CFD simulation results.  

 
Figure 5-1.Comparison of normalized temperature distributions in a square cavity between SAM 

simulation and experimental results [37] 

 

5.2 The	data-driven	turbulence	model	approach	
A data-driven turbulence model approach has been pursued to leverage machine learning (ML) 

technique to establish a surrogate model in SAM to replace the turbulence model in traditional 
CFD code. The data-driven modeling approach has received increasing interest in the research 
community, including preliminary research in the nuclear thermal fluid applications [39,40,41].  

For example, in normal RANS-based CFD code, the turbulence viscosity is a function of 
kinetic energy and dissipation rate, 𝜇r(𝑘, 𝜖); but in the data-driven turbulence model to be 
implemented in SAM, the turbulence viscosity can be defined as a function of local system 
variables, 𝜇r(𝜈, 𝜌, 𝑈, 𝑝, 𝑇, 𝛻𝑈, 𝛻𝑇, 𝑒𝑡𝑐. ). Since k and 𝜖 terms are deleted from conservation 
equation, the “computationally intensive” issue in traditional CFD simulations could be solved 
through using coarser mesh. Data-driven approach reveals the possibility of applying coarser 
mesh, but this remains to be tested. 
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5.2.1 The	framework	of	data-driven	turbulence	modeling	
The framework of data-driven turbulence modeling approach is depicted in Figure 5-2. It 

included four major steps: 

1. Part of the full system domain is selected to perform high-fidelity CFD simulation, while 
the rest of the system will be modeled by a system code. CFD simulation results would 
be collected using CFD tool like OpenFOAM, StarCCM+, Nek5000, etc. 

2. A machine learning surrogate model would be established based on training data from 
CFD simulations. 

3. After the machine learning model been built with an acceptable error range, the model 
would be implemented into SAM with its conservation equations.  

4. Perform the whole system simulation using the integrated code, which include both the 1-
D flow module and the reduced-order 3-D flow module. 

 
Figure 5-2.The framework of data-driven turbulence modeling problem 

 

5.2.2 Machine	learning	algorithm	
After reviewing three popular machine learning algorithms including neural network, Gaussian 

process regression, and decision tree/random forest, the neural network ML algorithm is selected 
in this work.   

• For the neural network algorithm, the software implementation is readily available in some 
open source ML libraries such as TensorFlow and Pytorch. Additionally, after the ML model 
is trained, the testing and application of the ML model is very fast. However, it requires the 



Advanced	Model	Developments	in	SAM	for	Thermal	Stratification	Analysis	
September	2018	
 

	 31	 ANL/NSE-18/7	
 

tuning of the hyper-parameters used in the training process which is a non-trivial work. The 
tuning of the hyper-parameters depends on experience and the specific applications. 

• Gaussian process regression is easy to use, don’t have many parameters to tune, and can 
provide prediction uncertainty range. However, the test process need to load all training data, 
so prediction is extremely slow! Prediction results would have large data density bias. 

• Decision tree/Random forest method costs less training expense and shows better performance 
for multi-dimensional input training. However, the results have randomness, i.e., the prediction 
results can be different each time with the same input conditions. Therefore, it is not suitable 
for scientific modeling.  
 

5.2.3 The	workflow		
The workflow of the data-driven approach could be depicted as below: 

 
Figure 5-3. The workflow of the data-driven turbulence modeling approach 

 

Firstly, the total data set is collected. The data amount can be very large if data of each point 
at each time step are collected. In order to deal with such large data, the model should be trained 
first on a small dataset to tune the hyperparameters in the neural network. After major hyper-
parameters been tuned, the training data could then gradually be extended to larger datasets. During 
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this process, training and test should be done iteratively to finally obtain an appropriate setting. If 
the training error is not small enough, one should try to use more complex network; If test error is 
not small enough, one would consider adding more training data. 

In most situation, a detailed experiment note table, such as an example shown in Figure 5-4, 
should be recorded to help decide what hyper-parameters are important and what you should do 
with the parameters (increase or decrease).  

 
Figure 5-4. Table of recorded test experiments 

While in dealing with large data, a “random selection” method to choose hyper-parameters is 
not acceptable as it would take too much time. Instead, the “Control Variable” method is used, 
which test each parameter for three times with other parameters fixed. The trend of the three test 
results would assist in deciding an increase or decrease of the parameter. Although the “Control 
variable” method may miss some combination of parameters that is especially efficient, it cost way 
less time than a “random selection” method. 

 

5.3 Case	study	of	3D	thermal	Stratification	

5.3.1 Case	introduction	
The data-driven turbulence modeling approach is tested with a transient flow in a tank, as 

defined in Section 4.3 and also shown in Figure 5-5. The case aims to simulate a transient scenario 
mimicking the flow in the SFR upper plenum during a postulated loss-of-flow transient. The inlet 
flow rate gradually decreases to very low values, while inlet flow temperature decreases quickly 
immediately after the transient starts, then gradually increases to a new peak, and slowly decreases 
at the later stage of the transient.  
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Figure 5-5. An illustrative picture of the test case geometry and velocity distribution before the 

transient 
 

5.3.2 Model	target	and	input	

The main goal of this study is to train a surrogate model that could substitute traditional 
turbulence model to save computational expense. To achieve this goal, model input and target 
should be selected first. In this study we only use turbulence viscosity to represent Reynold stress 
so to reduce computation complexity and test the approach. The reason we used turbulence 
viscosity as model target in this work is because the training data of this 3D case is too large (3~5 
TB). The currently available computational resource is not enough to support training large 
number of model targets. Therefore, only one major parameter, turbulence viscosity 𝜇r, is selected 
to represent all model targets.  

The selected machine learning inputs (also called as flow features) include:  

• Dynamic viscosity (Pa-s) 
• Pressure (Pa) 
• Temperature (K) 
• Temperature Gradient (K/m) 
• Velocity (m/s) 
• Velocity Gradient (/s) 
• Wall distance (m) 

Current flow features are all basic variables in conservation equations. The time derivatives of 
temperature and velocity were not included initially, and are being included in the ongoing training 
process. Wall distance is added as near wall performance for turbulence is extremely different 
from other regions. We added the wall distance so that the model could apply different correlations 
for the near-wall region and other regions. 
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5.3.3 STEP1:	tuning	hyperparameters	
Because the total data amount is too large. We started with 0.1% of the total data as training 

data to tune model hyperparameters. The 0.1% data could be randomly selected to reduce human 
bias. The parameters tuned from such data usually don’t need to change much after this process. 

In this work, the 0.1% data was selected from a small time range. In the CFD simulation, the 
total time steps are 5591. Partial data of the first 450 time-steps data are extracted as training data, 
while the rest of the data in the first 450 time-steps are used as testing data. The advantage here is 
to quickly test whether the model could make a good prediction for a short period. If it couldn’t 
even make a good prediction for this short time period, it could mean some components of the 
model are incorrect, for example, selection of model input & target, network structure, 
optimization algorithm, etc. 

The final tuned model hyper-parameters are as following: 
1. Network structure: 5-layer network, 4 ReLU layer + 1 Tanh layer 

2. Number of nodes in each layer: 1000 
3. Batch normalization is turned off as they extremely slow down training speed (batch 

normalization could make train converge in fewer iterations, but each iteration would 
take more time to train. Overall it will delay training speed. If the computational resource 
is enough this option is suggested to be turned on.) 

4. Learning rate: 0.0001 

5. Learning rate decay: decay 0.3 after 200 iterations 
6. Batch size: 2^18 = 262144 

7. Number of workers = 4 
8. Stopping Criteria: training error less than 0.00003 

9. Optimization algorithm: ADAM (adaptive moment estimation) algorithm 
 

5.3.4 STEP2:	Extend	the	training	dataset	
When moving to a large dataset, one should follow the flowchart (Figure 5-3) to gradually 

increase the data amount. Because the whole data is too large to be used as training data, one would 
need to find the minimal set of training data. Currently, we use 4.2% of the total data as training 
data, such train could cost 2 weeks to reach 3e-5 training error with 1 node of GPU on the BLUES 
cluster at Argonne Laboratory Computing Resource Center (LCRC). Parallel training is also tested 
but the performance is not good (only 5% faster), so only 1 node of the GPU is used to train the 
model. With more time and computational resources, model data could be used, and better 
accuracy is expected.  
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5.3.5 Results	

When dealing with a large dataset, this study follows the flowchart (Error! Reference source 
not found.) to gradually increase the data amount. Because the whole data is too large to be used 
as training data, only 4.2% of the total data are used as the training dataset.  

Training data and test data Training data and test data 
The training data are local data of each point in certain timesteps. The training timesteps are 

from timestep number listed below: 
traindata="1,2,3,4,5,6,7,8,9,10,30,50,70,90,110,130,150,170,190,210,230,250,270,290,310,3

30,350,370,390,410,430,450,475,500,525,550,575,600,625,650,675,700,725,750,775,800,825,85
0,875,900,925,950,975,1000,1025,1050,1075,1100,1125,1150,1175,1200,1225,1250,1275,1300,
1325,1350,1375,1400,1425,1450,1475,1500,1525,1550,1575,1600,1625,1650,1675,1700,1725,1
750,1775,1800,1825,1850,1875,1900,1925,1950,1975,2000,2025,2050,2075,2100,2125,2150,21
75,2200,2225,2250,2275,2300,2325,2350,2375,2400,2425,2450,2475,2500,2525,2550,2575,260
0,2625,2650,2675,2700,2725,2750,2775,2800,2825,2850,2875,2900,2925,2950,2975,3000,3025,
3050,3075,3100,3125,3150,3175,3200,3225,3250,3275,3300,3325,3350,3375,3400,3425,3450,3
475,3500,3525,3550,3575,3600,3625,3650,3675,3700,3725,3750,3775,3800,3825,3850,3875,39
00,3925,3950,3975,4000,4025,4050,4075,4100,4125,4150,4175,4200,4225,4250,4275,4300,432
5,4350,4375,4400,4425,4450,4475,4500,4525,4550,4575,4600,4625,4650,4675,4700,4725,4750,
4775,4800,4825,4850,4875,4900,4925,4950,4975,5000,5025,5050,5075,5100,5125,5150,5175,5
200,5225,5250,5275,5300,5325,5350,5375,5400,5425,5450,5475,5500" 

For the first 10 timesteps, all data are used. After that, we sample data every 20 timesteps. 
After 450 timesteps, we sample data every 25 timesteps until 5500 timesteps. 

The test dataset is selected based on the “worst situation principle”, which means use the data 
that potentially has the worst prediction result, to test what the model would perform in the worst 
situations. For example, if training data is from timestep 50 and 70, then the data in timestep 60 is 
considered to potentially have the worst performance, and would be selected as test data. The test 
data selected in this study are listed below (as timestep numbers): 

testdata="20,40,60,80,100,120,140,160,180,200,220,240,260,280,300,320,340,360,380,400,
420,440,462,487,512,537,562,587,612,637,662,687,712,737,762,787,812,837,862,887,912,937,9
62,987,1012,1037,1062,1087,1112,1137,1162,1187,1212,1237,1262,1287,1312,1337,1362,1387,
1412,1437,1462,1487,1512,1537,1562,1587,1612,1637,1662,1687,1712,1737,1762,1787,1812,1
837,1862,1887,1912,1937,1962,1987,2012,2037,2062,2087,2112,2137,2162,2187,2212,2237,22
62,2287,2312,2337,2362,2387,2412,2437,2462,2487,2512,2537,2562,2587,2612,2637,2662,268
7,2712,2737,2762,2787,2812,2837,2862,2887,2912,2937,2962,2987,3012,3037,3062,3087,3112,
3137,3162,3187,3212,3237,3262,3287,3312,3337,3362,3387,3412,3437,3462,3487,3512,3537,3
562,3587,3612,3637,3662,3687,3712,3737,3762,3787,3812,3837,3862,3887,3912,3937,3962,39
87,4012,4037,4062,4087,4112,4137,4162,4187,4212,4237,4262,4287,4312,4337,4362,4387,441
2,4437,4462,4487,4512,4537,4562,4587,4612,4637,4662,4687,4712,4737,4762,4787,4812,4837,
4862,4887,4912,4937,4962,4987,5012,5037,5062,5087,5112,5137,5162,5187,5212,5237,5262,5
287,5312,5337,5362,5387,5412,5437,5462,5487,5512" 

 
 



 Advanced	Model	Developments	in	SAM	for	Thermal	Stratification	Analysis	
September	2018	

 

ANL/NSE-18/7	 36	 	
	

Prediction accuracy 
The surrogate model is evaluated by prediction accuracy, which is defined here by the portion 

of test data that satisfy the required test error divided by the total amount of test data. The test error 
is the difference between the ML model predictions and the CFD simulation results.  

 
Figure 5-6. Prediction accuracy for the different acceptable error range 

 
In Figure 5-6, each point in the left picture represents the mean square error of all the data in 

that time step. On the right-hand side, each of the 3 pictures illustrates how the test errors correlated 
with the actual performance between the “true” turbulence viscosity (from CFD results) and model 
predicted turbulence viscosity. For Figure 5-6(a,b,c), the x-axis is the turbulence viscosity from 
CFD results and the y-axis is ML model predicted turbulence viscosity. As can be seen, if the test 
error is reduced to 1.16e-5, the actual correlation, shown in Figure 5-6c, is much better than those 
in Figure 5-6(a) and Figure 5-6(b). So, the less test error, the better the model. 

Acceptable error range is another important term. It is defined here as the acceptable error that 
could still allow CFD calculation to perform without diverging or running into the wrong solution. 
If the acceptable error range is 2e-4, which is the green line in Figure 5-6, then nearly all the points 
are below this value, the prediction accuracy is 98.68%. If the better model is required, then the 
acceptable error range should be reduced accordingly. When acceptable error range is equal to 5e-
5, the prediction accuracy is 86.34%; when the acceptable error range is equal to 1.16e-5, the 
prediction accuracy is 31.72%. 
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It could be seen from Figure 5-6 that, after 4000 timesteps, our prediction result becomes much 
better. This may relate to the fact that the flow becomes more and more steady. Time derivative 
terms may need to be added into the model input/flow feature. In the first 450 iterations, we use 
5% data as training data; In the following 5000 iterations, we use 4% data as training data. So, the 
data sample rate is very similar, but the performance differs a lot, especially in 1000~4200 
timesteps, when flow dynamics was very complex due to various contributing phenomena. 

A similar study has also been performed with less training data to test the impacts the training 
data amount to the final prediction accuracy. As can be seen in Table 5-1, increasing training data 
amount from 2.4% to 4.2% of total data highly improved model prediction accuracy. It is believed 
that with more data been used as training data, higher prediction accuracy could be achieved. 

Table 5-1. Prediction accuracy of models trained by different amount of training data 

Acceptable 
error range 

Prediction accuracy 

(use 2.4% data as training data) 

Prediction accuracy 

(use 4.2% data as training data) 

2e-04 91.06% 98.68% 

5e-05 59.54% 86.34% 

1.16e-05 21.14% 31.72% 

 

5.3.6 Notes	on	computing	resources	
The current limitation in this work or in any other data-intensity ML application is mainly the 

available computing resources (mainly GPU resources).  

1. The data amount is 3TB in binary format from all processed CFD results. Data is large 
because we collect data of each point in each time step. Such large data requires high 
computational resources. 

2. Currently major machine learning frameworks or libraries are all developed for GPU. Some 
have CPU version but only for the very simple cases.  

3. The Parallel GPU computing technology is still immature. The Parallel GPU technique 
were tried with the Argonne LCRC/BLUES and ALCF/Cooley clusters. But the 
performance was very bad, i.e., the calculation speed for 12 GPUs is only 7% faster than 
2GPUs on 1 motherboard. 

 

5.4 Summary	and	Future	Works	
A data-driven turbulence or closure model development framework has been developed for 

SAM 3D flow module. The accuracy of it remains to be improved. To increase model accuracy, 
sufficient computational resource will need to be acquired or secured. One solution is to switch to 
2D cases so that the training would cost less time. Also, time derivative terms of temperature and 
velocity are expected to be added into flow feature, potentially increasing the model accuracy at a 
higher level. After increasing model accuracy into an acceptable level, the next step would be 
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implementing the model into SAM, which may bring additional challenge as the performance of 
the ML-based model will need to be further examined on coarse meshes.  
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